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Abstract—Reflection and transmission of light by cholesteric liquid crystal–glass–cholesteric liquid crystal
and cholesteric liquid crystal(1)–cholesteric liquid crystal(2) systems were studied. The classical Ambart-
sumyan method of adding layers and the concept of a sewing function were used. This approach was developed
earlier in astrophysics for the theory of radiation transfer. Here, we used a version of this method adapted to
wave optics. The Jones matrices are constructed for these systems. The features of the reflection and transmis-
sion spectra, optical rotation and ellipticity of polarization were studied for these systems. It is proposed to use
these systems as tunable narrow-band filters and mirrors. These systems can be used, for example, to develop
a variety of optical elements for lasers and of polarimetric elements in ellipsometry. The specific features of
eigenpolarization are also discussed. It is shown that optical rotation of the two layers of cholesteric liquid crys-
tals, which differ from each other only by the sign of the helix, is nonzero, and it becomes substantial in the
diffraction reflection region. A unique property of these systems is the degeneracy (coincidence) of eigenpolar-
izations. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Extensive application of liquid crystals have stimu-
lated considerable interest in the study of optical prop-
erties of various composite structures containing liq-
uid-crystal layers and, in particular, cholesteric liquid
crystals (CLCs). The problem of normal incidence of a
monochromatic plane wave on a CLC layer with the
uniform helixlike structure has been adequately studied
[1–3]. The results of numerical and approximate ana-
lytical studies are well known, and recently an exact
analytical solution of this boundary problem was
obtained [4]. It is very attractive to use this exact solu-
tion to analyze multilayer optical structures containing
CLC layers.

The efficiency of the direct application of the
boundary condition method for solving the problem of
propagation of an electromagnetic wave through multi-
layer structures decreases with an increasing number of
the layers in the system because the number of equa-
tions subject to analysis increases. For example, the
treatment of a three-layer glass–CLC–glass system
involves a numerical analysis of a system of 32 equa-
tions with 32 unknowns [5, 6]. The computer analysis
of such a system is not a problem, but even in this sim-
ple case the account of absorption or large anisotropy of
the medium requires considerable efforts to maintain
reasonable accuracy of calculations. Therefore, there is
a need to find methods and procedures where the
dimension of the system of equations does not depend
0030-400X/00/8804- $20.00 © 0586
on the number of layers in the multilayer optical system
(for example, recurrent methods or the 4 × 4 matrix
method, etc.).

A variety of methods of “layer addition” have been
long used in crystal optics to analyze multilayer struc-
tures (see [2, 7–10] and references therein). In this
paper, we use a simple and elegant modification of the
Ambartsumyan method of the addition of layers
(invariance principle), which was proposed in [11] and
developed in [9]. This method provides an exact solu-
tion in the sense that it takes into account all multiple
reflections at all interfaces. It is assumed that the solu-
tion of the “reflection–transmission” problem for each
layer is known beforehand.

The classical Ambartsumyan method of the addition
of layers [11] and the concept of a “sewing” function
[9, 12] were earlier developed for astrophysical prob-
lems of multiple scattering in turbid media. To use
these results in wave optics, it is necessary to pass from
a description in terms of the intensity to a more general
description of optical phenomena in terms of “ampli-
tude and phase.” In this way, we studied below the
transmission and reflection of light in the CLC–glass–
CLC and CLC(1)–CLC(2) systems. This optical model
is useful in connection with the possibility of creating
artificial helical media (including media with specified
parameters), as well as artificial ferromagnetic helical
structures, which can imitate the properties of CLCs at
ultrahigh frequencies. The problems considered in this
2000 MAIK “Nauka/Interperiodica”
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paper are also interesting from the theoretical point of
view.

METHOD OF ADDITION OF LAYERS

Let a wave Ei be incident from the left on a plane
layer giving rise to the waves Er and Et reflected and
transmitted through the layer, respectively. Let us
expand the complex amplitudes of the incident,
reflected, and transmitted waves in the circular base
polarizations

(1)

where n+, n– are the unit vectors of the circular base
polarizations. The reflected and transmitted waves are
related to the incident wave by the expressions

(2)

where  and T are the Jones matrices for the given
layer.

Consider now a system consisting of two layers Ä
and Ç adjoined from “left to right” to each other. Then,
similar to [9], it can be easily shown that upon inci-
dence of the wave on the composite A + B layer, the
reflection, , and transmission, , matrices are
expressed in terms of matrices A and B of the corre-
sponding layers in the form:

(3)

The amplitudes  and  describe the resulting waves
that arise at the interface of the layers A and B when this
“sewing” plane itself represents a primary radiation

source. The advantage of the use of matrices  and 
is, in particular, that in this case a complication of the
problem (addition of radiating plane sources between
the layers or inside them or the passage from the study
of parameters of reflection and transmission to analysis
of parameters of the internal fields in the optical sys-
tem) does not lead to a necessity for solving new equa-
tions. This is discussed in more detail in [9, 10, 12],
while our treatment below is restricted by the reflec-
tion–transmission problem.

The sewing matrices  and  can be found from the
system [9]

(4)

where  is the unit matrix, the tilde denotes the reflec-
tion–transmission properties of the layer when the
wave is incident from the right side. For example, when

Ei r t, , Ei r t, ,
+ n+ Ei r t, ,

– n–+
Ei r t, ,

+

Ei r t, ,
–

,= =

Er R̂Ei, Et T̂Ei,= =

R̂

R̂A B+ T̂ A B+

R̂A B+ R̂A T̃ AŜT̂ A,+=

T̂ A B+ T̂ BP̂T̂ A.=

ˆ

Ŝ P̂

Ŝ P̂

Ŝ P̂

P̂ Î R̃AŜ,+=

Ŝ R̂BP̂,=

ˆ

Î
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the layer is adjacent to the same medium from both its
sides, the Jones matrices for the light incident from the
right and left are related by the expressions:

(5)

where  =  for circular base polarizations.

By solving system (4), we obtain for  and 

(6)

These addition formulas can be used repeatedly, by
choosing the layers A and B according to the conditions
of a specific problem (addition formulas are discussed
in more detail in [9, 10]). In this way, one can construct
recurrently (numerically or analytically) and calculate
an optical system with an arbitrary number of sublayers
with arbitrary (specified beforehand) characteristics of
the components.

LIGHT REFLECTION AND TRANSMISSION 
BY THE CLC–GLASS–CLC SYSTEM

Let a light wave be incident normally on the CLC–
glass–CLC system. We will solve the problem of reflec-
tion and transmission of light by this system in two
stages: First, a glass layer is joined from the left to the
CLC(2) layer, and then the CLC (1) layer is joined
again from the left to this system. The glass layer is uni-
form and optically isotropic and is characterized by a
complex refractive index n. This method can also be
applied to the description of anisotropic or gyrotropic
layers. In this case, the Jones matrices for an isotropic
glass plate are replaced by the corresponding matrices
for anisotropic or gyrotropic plates.

Let A and B be a glass layer and the second layer of
the CLC, respectively. Then, using the analytic expres-
sions for the Jones matrix elements for individual glass
layers [8] and CLC layers [4] and expressions (1)–(6),
one can obtain the exact analytic expressions for the
Jones matrix elements for the glass–CLC(2) system in
the form:

(7)

T̃ F̂
1–
T̂ F̂,=

R̃ F̂
1–
R̂F̂,=

ˆ

ˆ

F̂ 0 1

1 0 
 
 

Ŝ P̂
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P̂ Î R̃AR̂B–[ ] 1–
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ˆ
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T jj
a
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d

2( )[ ]exp=

× Q j
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1 r̃H
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+[ ] /∆1,
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d
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where

ε1, 2 are the principle values of the dielectric constant
tensor of the CLC in the plane perpendicular to the sys-
tem axes; λ is the wavelength in vacuum; σ is the pitch

j k, 1 2, j k,≠,=

∆1 1 r̃H
2( )

–( )
2

F1
2( )

F2
2( )

,–=

Q1 2,
n( ) γ α c1 γ α χr1+−( ) c2 γ α χr1±( )+{=

– iu s1 w1 2l1 α+−( ) s2 w2 2l2 α+−( )+[ ] } /∆,

V
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+ 2u
2
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u πd
n( ) εm/λ , χ λ /σ εm,= =
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n( )( ),cos= =
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n( )
, k1 2,sin 2u f 1 2, /d

n( )
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f 1 2, 1 χ2 γ±+ , εa ε1 ε2–( )/2,= =
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r τ12 τ23 i2β–( )exp+[ ] / 1 τ12τ23 i2β–( )exp+[ ] ,=
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of helix; d(n) is the thickness of the CLC layer; a = 2π/σ,
d is the thickness of the glass plate; n, nv are refractive
indices of a glass plate and vacuum, respectively; εv is
the dielectric constant of the vacuum; the superscript n
(n = 1, 2) in parentheses denotes the number of the CLC

layer; and the quantities , V(n), , and H(n)

depend on the corresponding parameters of the nth
layer of the CLC (the superscripts of these parameters
were omitted for simplicity).

At the second stage, we will join the first CLC layer
to the obtained system from the left. Now, we will treat
A as the first CLC layer and B, as the glass–CLC(2) sys-
tem.

By using explicit expressions for the matrix ele-
ments of the composite structures, we obtain, with the
help of equations (1)–(6), for the elements of the Jones
matrix describing the CLC(1)–glass–CLC(2) system

(8)

where 

Figure 1 shows the dependence of the reflection
coefficient on the wavelength for the incident light with
linear polarization (along the x-axes) (curve 1), left-
hand (curve 2) and right-hand (curve 3) circular polar-
ization. The CLC layers differ by the pitch value only.
The pitches were chosen to provide the separation of
regions of selective reflection. If the isotropic layer
absorbs the light of only one circular polarization (left-
or right-hand), this system represents a narrow-band
filter for right- or left-hand polarization, respectively.
Because the width of the transmission band
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Fig. 1. Dependence of the reflection coefficient on the wavelength of light with (1) linear, (2) left-hand, and (3) right-hand circular

polarizations. The parameters of the system are  =  = 2.29,  =  = 2.143, σ(1) = 0.42 µm, σ(2) = 0.44 µm, d(1, 2) =

50|σ(1, 2) |, d = 1000 µm, n = 1.5.

ε1
1( ) ε1

2( ) ε2
1( ) ε2

2( )
∆λ = (σ(1)  – σ(2) , |σ(2) | >
|σ(1) |, the spectral region of the transmission band can
be varied by changing the pitch of the CLC helix by
varying temperature or external fields (electric, mag-
netic, or hypersonic). Thus, we have a narrow-band fil-
ter of circular polarization with the controlled band-
width ∆λ and tunable center frequency. Such a filter can
be also manufactured using three CLC layers with
appropriately chosen values and signs of the pitch of
helixes of layers. Selective filters with similar pro-
perties for linear polarization can be composed, for
example, from CLC(σ(1), d(1))–CLC(–σ(1), d(2))–glass–
CLC(σ(2), d(3))–CLC(–σ(2), d(4)) system.

When the CLC layers have different signs and val-
ues of the pitch of helix (and the helix pitches are cho-
sen to obtain slightly overlapped regions of selective

εm
1( )

1 δ 1( )
+( ) εm

2( )
1 δ 2( )

–( )
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reflection), the calculations of the wavelength depen-
dence of the reflection coefficient show that in the over-
lap region the system reflects any polarization. There-
fore, such a system can be used as a tunable narrow-
band mirror.

Note again that the advantage of “filters” and “mir-
rors” under study is their high spectral resolution and
the tunability of the transmission and reflection bands,
as well as the possibility of varying the widths of these
bands.

Although we discussed only three possible applica-
tions of the systems described, we can propose a variety
of other applications of these systems.

Note that the apparent absence of coherence effects
in reflection (effects of multiple reflections) is
explained by the fact that we considered CLCs with
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Fig. 2. (1) Ellipticity e and (2) optical rotation ϕ as functions of the wavelength of the incident with light linear polarization;
d(1, 2) = 35|σ(1, 2) |. The dashed curves correspond to the case when the helixes have the same sign, and the solid curves correspond
to the opposite signs of helixes. The rest of the parameters are the same as in Fig. 1.
equal values of the average dielectric constant. In addi-
tion, the dielectric constant of the isotropic glass was
also chosen approximately equal to the average dielec-
tric constant of CLC layers. It is obvious that more
detailed numerical calculations will reveal different
coherent effects. These effects should be most pro-
nounced in polarization properties of the CLC–glass–
CLC system.

Figure 2 shows the dependence of optical rotation ϕ
and the ellipticity e on the wavelength for the two cases
considered above. The incident wave has the linear
polarization (along the x-axis).

Calculations of the dependence of the reflection
coefficient on the wavelength for different refractive
indices of the isotropic glass show that when the dielec-
tric constant of the glass substantially differs from the
average dielectric constant of the CLC layers, this
dependence becomes oscillatory even in the region of
selective reflection. This is caused by multiple reflec-
tions in the glass plate. Note that multiple reflections
substantially change the shape of the diffraction plateau
of the CLC layer behind the glass plate.

SPECIAL FEATURES OF EIGENPOLARIZATIONS

It is known that the eigenpolarizations are the two
polarizations that do not change after the propagation
of light through an optical system. The properties of
eigenpolarizations of a layer with periodic helical
structure were studied in [13], where it was shown that
in the case of a weak local anisotropy of the refractive
index, they represent two near-circular polarizations
(right- and left-hand). An important feature of periodi-
cal helical structures is that they show complete selec-
tivity not with respect to circular polarizations but with
respect to eigenpolarizations, which become circular
OPTICS AND SPECTROSCOPY      Vol. 88      No. 4      2000
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Fig. 3. Dependences of the ellipticity of eigenpolarizations on the wavelength for different refractive indices of the glass plate. The
dashed curves correspond to the case when the helixes have the same sign (σ(1) = 0.42 µm, σ(2) = 0.44 µm), and the solid lines cor-
respond to the opposite signs of helixes (σ(1) = 0.42 µm, σ(2) = 0.43 µm). (1) correspond to n = 0.5, (2) to n = 1.5. Other parameters
are the same as in Fig. 1.
only in the limit δ ! 1. The light with one of the eigen-
polarizations undergoes diffraction reflection, whereas
the light with the other eigenpolarization is not
reflected. Analysis of the influence of the anisotropy δ
on the eigenpolarizations of the CLC layer showed that
their ellipticity decreases (in modulus) with increasing
δ, (by modulus) and in the limiting case δ @ 1, they are
transformed to orthogonal linear polarizations

Note also that, while in the absence of absorption
the eigenpolarizations are orthogonal, in the presence
of absorption, they cease to be orthogonal. In the pres-
ence of absorption, the eigenpolarizations of usual
gyrotropic media are also nonorthogonal [14]. They
cease to be orthogonal in the presence of dielectric
interfaces, i.e., when the dielectric constant of the CLC
adjacent to the layer differs from the average dielectric
constant of the CLC. In this case, the ellipticity of the
OPTICS AND SPECTROSCOPY      Vol. 88      No. 4      2000
eigenpolarizations has the same modulus but opposite
signs.

The eigenpolarizations of the CLC–glass–CLC sys-
tem have the following properties.

In the case of weak local anisotropy of refractive
indices of the CLC layers and a small difference
between the dielectric constant of a glass and the aver-
age dielectric constant of the CLC, the eigenpolariza-
tions are approximately circular (left- and right-hand).
Unlike the case of a single CLC layer, these polariza-
tions are not orthogonal even in the absence of absorp-
tion, and the ellipticity of eigenpolarizations also differ
even in the modulus. If the signs of the helixes of the
layers are the same, the light with one of the eigenpo-
larizations undergoes the diffraction reflection from the
layer, whereas the light with another eigenpolarization
is not reflected. If the helix signs are different, the light
with one of the eigenpolarizations is reflected from one
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The CLC layers differ only in the helix sign. σ(1, 2) =
0.42 µm, d(1, 2) = 35σ(1, 2), d = 0. Other parameters are the
same as in Fig. 1.
of the layers, whereas the light with another eigenpolar-
ization is reflected by the second layer.

The eigenpolarizations depend substantially on the
dielectric constant of the isotropic glass. Figures 3 and
4 show the dependences of the ellipticity and azimuth
of the eigenpolarizations on refractive index of the
glass plate. The dashed curves correspond to the case
when the signs of helixes are the same, and the solid
curves correspond to the case of the opposite signs.

REFLECTION AND TRANSMISSION 
OF THE LIGHT BY SYSTEM CLC(1)–CLC(2) 

The solution of this problem can be obtained by sub-
stitution d = 0 in (8) or directly by sewing the first CLC
layer with the second one. In the general case, the
explicit expressions for the elements of the Jones matri-
ces are cumbersome. More simple expressions are
obtained for the case when the CLC layers differ only
by the sign of the helix and the thickness of the layers
satisfy the conditions: a(n)d(n) = 2πj, j = 1, 2, …, i.e.,
OPTICS AND SPECTROSCOPY      Vol. 88      No. 4      2000
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when the widths of the layers are a multiple of the helix
pitch and α(n) = 1, n = 1, 2. In this case, the elements of
the Jones matrix have the form:

where G = u2δ2v2v1, ξ = (c1 – iul1s1)/(c2 + iul2s2), h1, 2 =
γ ± 2χ, v1, 2 = s1, 2 /(c1, 2  iul1, 2s1, 2), ∆1 = (1 + G)2 +
u2δ4(v2 – v1)2/γ2, ∆ = 2γs1s2/v1v2.

The calculations showed that this system exhibits
the properties of an ideal mirror: In the region of selec-
tive reflection, the light of any polarization undergoes
100% reflection.

Figure 5 shows the dependences of the optical rota-
tion ϕ and the polarization ellipticity e on the wave-
length. One can see that in the region of diffraction
reflection, ϕ differs substantially from zero. The optical
rotation also differs from zero outside this region, but
only slightly. The nonzero optical rotation is caused
both by multiple reflections and the dependence of the
rotation in each layer on the azimuth and the ellipticity
of polarization of the incident light.

The study of properties of the eigenpolarizations of
this system shows that they are degenerate; i.e., the
eigenpolarizations coincide. This degeneracy does not

Tii δ2 ξ2
1+( ) 8χ2ξ+{=

+ u
2δ2 δ2

v 2 ξv 1–( )
2

2ξγ2
v 1v 2+[ ] } / ∆∆1ξγ( ),

Tij δ h j 1 ξ–( )[=

+ u
2δ2

h jv 2 ξhiv 1+( ) v 2 ξv 1–( ) ] / ∆∆1ξγ( ),

Rii iuδ2
v 1 v 2–( ) 2 v 1 v 2–( ) γ2

4χ2
+( )[+{=

+ 2χ ξ2
v 1 v 2–( ) 2χ γG+( )/ξ

+ γG h1v 2 h2v 1+( ) ] / ∆∆1γ( ) } / 2γ( ),

Rij iuδ v 1h j v 2hi+( )∆1{=

+ 3 G+( ) δ2
v 1h j ξ2

v 2hi+( ) 4 1–( )
jχξ v 1 v 2–( )+[ ]{

+ 4χ2
v 2h j ξ2

v 1hi+( ) ] γ2
1 3G+( )+

× v 2h j ξ2
v 1hi+( ) } / 2∆ξγ( ) } / 2∆1γ( ),

i j, 1 2, i j,≠,=

+−
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disappear when an isotropic glass plate is introduced
between the CLC layers.

In conclusion, note that the dependences obtained
can be tested in real experiments and used for the devel-
opment of a variety of optical elements based on the
multilayer CLC structures.
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