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An exact representation of the transfer matrix for stratified homogeneous uniaxial media is derived. It can be used
to calculate optical quantities such as reflectance and transmittance by means of Berreman's 4 X 4 matrix method,
permitting calculations for thick homogeneous slabs such as polarizers in one single step without the commonly used
truncated series expansion. When the dielectric tensor of an inhomogeneous medium varies continuously with the
normal to the plane of stratification, the medium is divided into thin slabs. The transfer matrix of the whole
medium is then obtained by multiplying the transfer matrices of all slabs. Treating each slab as homogeneous gives
satisfactory results, as shown in an example of a periodic structure for which an analytic solution is known.

INTRODUCTION

An appropriate formalism for the computation of light prop-
agation in anisotropic stratified media is the 4 X 4 matrix
method, which was introduced by Teitler and Henvisl and
applied to liquid-crystal devices by Berreman.2' 3 The cen-
tral problem of this method is to find the 4 X 4 transfer
matrix P that relates the tangential components of the elec-
tric and magnetic field vectors at the entrance of the medi-
um to those at the exit. Unfortunately, in the case in which
the medium is inhomogeneous, an analytical expression for
P does not exist in general. If the layer is divided into thin
slices, such that the director orientation varies only slightly
within the slice, the matrix P is approximated by the product
over all matrices Pi associated with single slices. Berreman
treated each slice as homogeneous and used a truncated
series expansion for the matrix Pi of a single slice.2 In
another paper he added a power-series approximation for
the variation of the director.3 Both approaches require suf-
ficiently thin slabs so that higher-order terms can be neglect-
ed.

For a homogeneous uniaxial medium, Gagnon4 found an
analytical solution for the case in which the light impinges
normally. Recently Abdulhalim et al.5 used the Lagrange
interpolation to get an exact expression for cholesterics and
chiral smectic C (SmC*). For SmC* at oblique incidence,
they calculated the eigenvalues numerically. The purpose
of this paper is to derive an explicit expression for the trans-
fer matrix of a homogeneous uniaxial medium with an arbi-
trary director orientation for oblique incidence by means of
the theorem of Cayley and Hamilton. The expression can
be used to approximate the matrix P of an inhomogeneous
medium. Moreover, the solution for thick homogeneous
slabs, e.g., polarizers, can be calculated in one single step. In
several special cases, simplifications can be made to reduce
the computation time.

When the light impinges normally to a cholesteric struc-
ture, there exists an analytic solution, as described by
Oseen.6 It can be shown that only a slight modification of
this solution is necessary to generalize it to the case in which

tilt angle has any arbitrary constant value.7' 8 We formulate
the solution in a 4 X 4 matrix representation, which enables
us to compare the exact solution with the approximation by
using a set of homogeneous slabs as explained above.

THEORY

Let us consider a uniaxial medium with Ae = ell - ej and with
arbitrary director orientation, denoted by the Euler angles
0(z) and 0(z), with respect to the z axis. The medium is
bounded by two planes, z = z1 and z = Z 2 . Light with a
complex time dependence exp(iwt) coming from a medium
with refractive index no is incident at z = z1 with an angle A
to the z axis. From Maxwell's equations we can derive the
following set of four linear differential equations for the
tangential components of the electric and magnetic field
vectors 2:

dq6 =-iko\(z)4,,
dz

with

= (E., Hy, E" -H.)T,

o= w/c (c is the velocity of light in vacuum),

A1 1 A12 A13 0

A A2 1 A1 1 A23 0 ,
0 0 0 A34

LA2 3 A13 A43 0 J

Al1 = Ae sin 0 cos 0 sin 0X,

e33

x2
A12 = -

633

_1 A~e sin 0 cos 0 cos 0X

e33

(1)
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A21 = -

A23 =-EI

1- Ae sin2 0 cos2
0

E33

Ae sin2 0 sin 0 cos 0

fi
32=- (xi+ X+xi) /_

i=l Aij~ik^i

4 Of

i=l ijkikiil

A4 3 = eI
e- Ae sin2 0 sin 2

0

E33

E33 = A + Ae cos2 0,

X = no sin A.

The matrix /\(z) depends mainly on the components of the
dielectric tensor and therefore on the director configuration
within the liquid crystal. The solution of Eq. (1) can be
written by use of a 4 X 4 transfer matrix P as follows:

6z2) = P(z2, Z1)4(Z1). (2)

All relevant optical parameters such as transmittance and
reflectance may be computed from P as described in Ref. 2.
The main problem of the 4 X 4 matrix method is to deter-
mine the matrix P that relates the tangential components of
the electric and magnetic fields at z1 to those at Z2. When
the medium is homogeneous, there exists an expression for
UP

- koh - (koh)2
_2

P=exp(-iko/h)=I-i- A- 2 +* (3)
1! 2!

where h = Z2 - z1. This requires a sufficiently small thick-
ness h so that higher-order terms can be neglected.

According to the theorem of Cayley and Hamilton, this
matrix function can be expressed by a finite series up to the
power of n - 1, where n X n are the dimensions of the
matrix 9:

P = 001 + fll't + #2 t2 + #3 ^3. (4)

The scalars f3i are determined by the following set of equa-
tions:

exp(-ikoXih) = i0 + O1Ax + OA2Ai + / 3 X3, i = 1, ... , 4,

(5)

where Xi are the eigenvalues of A10:

Al 2 = + (el -

E13 (E 1 9 1 AC 2 COcs20 X 2 1/2X3,4 =-e X + [33 -(1-e sin0 o0)2 
E33 E L3\ 'Ell

(6)

with el3 = Ae sin 0 cos 0 sin 0.
The solution for #i can be written in the following form:

4 f.
0o =-E XjAkAl A X A

i~ i ik il

4 f.
A31= E(Xxk +XAjX + XkXl) xx

i=1 ijJikXl

where

Xii =i -Xi-A 

fi = exp(-ikoXih),

i,j, k, =1, ... , 4.

All values i,j, k, and I are different from one another. When
eigenvalues with different indices are equal, L'H6spital's
rule must be applied to determine f3i. This exact expression
for P permits us to compute it even for thick slabs (e.g.,
polarizers) in one single step, which saves computation time.

A close look at the powers of a shows that only 10 of the 16
matrix elements of P are different from one another:

P22 = Pll, P31 = P24,

P41 = P23, P4 2 = P13,

P32 = P14.

P44- =33-

When A1 1l and A13 vanish [for example, when the director lies
parallel to x-y plane (0 = -r/2)], the expressions for Pij can be
simplified:

P 1 = (X12 sin2 0 cos a 3 + At cos2 0 cos a 1),

P =-i 2 ( sin2 0 sin a3 + I cos2 sin al
x3E 1 1 k s 1

x1
2 sin k cos 0

P13 =- (cos a 3 - cos al),

P14 = .sin qyCOS (V X sin a 3 - X1sin al)

P21 = X (x3 sin2 sin a 3 + A cos2 sin a,) 

_t sin 0 cos 0
P23 = i (X3 sin a 3 - 1 sin 1 ),

El sin 0 cos 0
P24 = Y (cos a 3 - cos al),

P3 3 = (,e cos 2
0 cos a 3 + 12 sin 2

0 cos a 1 ),

P34 =-i cos 0 sin a 3 + XI sin2 sin al

P43 = -i- (e A3 cos22 sin a 3 + x1
3 sin2 0 sin a 1),

Y = At-X 2 sin 2 X,

ai = kokih.

A3 4 = 1,

(7)

(8)
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PERIODIC INHOMOGENEOUS MEDIA

There are only a few cases in which a solution can be found in
inhomogeneous media. Oseen6 obtained an exact solution
for a cholesteric layer (0 = 7r/2), where the light travels along
the helical axis. It was discussed in detail by several au-
thors, e.g., Nehring.' 1 The eigenvectors of the matrix A(z)
are

sin y + ixk cos 1
Pk sin -y + iqh COS 'Y

O Ph s -y + iq k s jexp(-ikOmhz), (9)[-COS 'y + jXk sin -y

=Ph cos y + iqk sin -y

where -y = (27r/p)z, p is the pitch, and

mh = + {(X/p) 2 + E+ i [4(X/p) 2 e+ + E_2]1211/2 ,

e+ = (ElI + E1)/2, E_ = (ell -e

mk + (X/p)2
-

Xk = - 2X/Pmh

A
Pk = mk + - Xk,

P

X
qh =-+ mhxk.

P

b

b CNI

When the tilt angle has an arbitrary constant value, one
must replace eli by elleI/E33.

7
'
5

With these eigenvectors we can obtain an expression for
the matrix P:

(10)

The column vectors of ,6 are the eigenvectors ah. An approx-
imation of any arbitrary inhomogeneous medium by slabs of
a uniformly twisted structure is not very useful because the
solution is restricted to normal incidence. However, it en-
ables us to compare the exact solution with the approxima-
tion by using homogeneous slabs. We calculated the reflec-
tance of a cholesteric layer with 10 full turns. In Fig. 1 the
four components of reflectance are plotted versus X/p. R7,,,
and R,e are the components parallel and perpendicular to
the plane of incidence when the incident light is parallel
polarized; R¢,,, and R, are the corresponding components
for when the incident light is polarized normally to that
plane. This example was also calculated by Adulhalim et
al.

5 In Fig. 2, the maximum difference of the four compo-
nents of reflectance between the exact solution and the ap-
proximate solution is plotted versus the number of homoge-
neous slabs for one full turn. When more than 10 slabs per
pitch are used, the differences are caused by a slight shift of
the edges of the reflection band.

I, N. , / \,

X/p

/ - \ \ -%
.�/ N.

Fig. 1. R.,,,, R,,e (solid line), R .... Recur (dashed line) versus X/p of a cholesteric layer. d/p = 10, eI = 2, ElI = 3, eo = 1.
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Fig. 2. Maximum difference of R., aR,, R,,,,, and R,,, between the exact solution and the approximation by homogeneous slabs versus the
number of slabs per full turn (1 S X/p • 2).

CONCLUSION

We have presented a method for the exact evaluation of the
matrix P of a homogeneous uniaxial layer. A good approxi-
mation of an anisotropic medium, in which the director
varies with the normal to the layer, can be found when the
layer is divided into homogeneous slabs. The amount of
numerical manipulations can be kept within reasonable lim-
its so that the calculations can be performed on a personal
computer.

REFERENCES

1. S. Teitler and B. Henvis, "Refraction is stratified anisotropic
media," J. Opt. Soc. Am. 60, 830-834 (1970).

2. D. W. Berreman, "Optics in stratified and anisotropic media: 4
X 4 matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).

3. D. W. Berreman, "Optics in smoothly varying anisotropic pla-

nar structures: application to liquid-crystal twist cells," J. Opt.
Soc. Am. 63, 1374-1380 (1973).

4. R. J. Gagnon, "Liquid-crystal twist-cell optics," J. Opt. Soc.
Am. 71, 348-353 (1981).

5. I. Abdulhalim, L. Benguigui, and R. Weil, "Selective reflection
by helicoidal liquid crystals. Results of an exact calculation
using the 4 X 4 characteristic matrix method," J. Phys. (Paris)
46, 815-825 (1985).

6. C. W. Oseen, "Beitraige zur Theorie der anisotropen Flissigkei-
ten," Ark. Mat. Astron. Fys. A 21, 14-35 (1925).

7. E. G. Sauter, "Light propagation in twisted dielectric media,"
Appl. Phys. B 27, 137-139 (1982).

8. 0. Parodi, "Light propagation along the helical axis in chiral
smectics C," J. Phys. (Paris) Colloq. 36, 22-23 (1975).

9. See, for example, R. A. Gabel and R. A. Roberts, Signals and
Linear Systems (Wiley, New York, 1987), pp. 158-169.

10. H. Kahn and F. J. Birecki, in The Physics and Chemistry of
Liquid Crystal Devices, J. Sprokel, ed. (Plenum, New York,
1980), pp. 125-142.

11. J. Nehring, "Light propagation and reflection by absorbing cho-
lesteric layers," J. Chem. Phys. 75, 4326-4337 (1981).

LflIn-

1-

CN

tm

Wohler et al.


